

Large Area Lighting

In wenigen Bereichen des öffentlichen Lebens nimmt das Thema Sicherheit eine so kritische Stellung ein wie im Flugverkehr. Die Beleuchtung am Vorfeld stellt dann Sicherheit her, wenn sie Leistung ohne Kompromisse erbringt, alle Normen erfüllt, langlebig und zuverlässig ist.

ewo ist nicht nur Vorreiter im Einsatz von LED-Technologie für große Flächen, sondern steht generell für den höchsten Standard an Flughäfen und Logistik-Arealen. Unsere Produkte bewähren sich an regionalen Flughäfen ebenso wie an globalen Drehkreuzen. Sie sind robust, werden im sibirischen Winter eingesetzt und funktionieren auch zuverlässig in der arabischen Hitze.

Die Menschen, die vor Ort arbeiten, sind überzeugt: Die Beleuchtung wird als heller wahrgenommen, durch den höheren Farbwiedergabeindex lassen sich zum Beispiel Dokumente besser erkennen. Wo Licht gebraucht wird, ist es gleichmäßig und blendfrei vorhanden. Das sorgt für Entspannung bei der Arbeit – und erhöht damit die Sicherheit.

Wir schöpfen das Potenzial von LED für die Beleuchtung von Großflächen aus.

Seit über 15 Jahren liegt ein Schwerpunkt unserer Arbeit auf Beleuchtung an Hochmasten: Wir haben im Bereich der Spiegel-Werfer-Systeme Erfahrungen gesammelt – und waren dann Vorreiter bei der branchenweiten Umstellung auf LED-Technologie. Speziell für die Großflächenbeleuchtung wurde bei ewo eine LED-Lichteinheit als Grundbaustein des Produktsystems entwickelt. Sie erreicht die Leistungsdimension von Flutlichtsystemen – mit einem bis zu 70 Prozent niedrigeren Energieverbrauch und deutlich geringerem Wartungsaufwand. Der modulare Charakter der Technologie und ihre vielfältigen Konfigurationsvarianten ermöglichen es uns, die Produkttechnik genau auf die jeweilige Aufgabe abzustimmen. Durch eine gute Planung entstehen die richtigen Lösungen für Ihr Vorhaben. Zentrale Herausforderungen wie eine präzise Lichtlenkung und ein zuverlässiges Temperaturmanagement meistern unsere Systeme durch die hohe Qualität der dafür verantwortlichen Komponenten.

Referenzprojekte – Flughafen

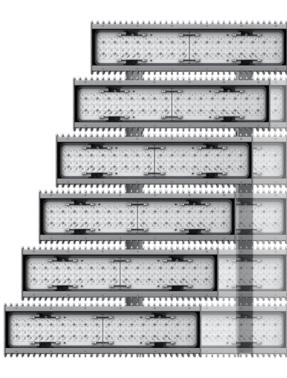
•		•		•	
AAL	Aalborg Airport	FNI	Aéroport Nîmes-Alès-Camargue-Cévennes	RIL	Rifle Garfield County Airport
AAR	Aarhus Airport	FRA	Frankfurt Airport	RIX	Riga International Airport
ABJ	Abidjan Airport	GRJ	George Airport	RTM	Rotterdam The Hague Airport
ABZ	Aberdeen Airport	HAJ	Hannover-Langenhagen Airport	RTW	Saratov Airport
ADL	Adelaide Airport	HAM	Hamburg Airport	RUN	Roland Garros Airport (Réunion)
ARN	Stockholm Arlanda Airport	HEL	Helsinki-Vantaa Airport	SIN	Singapore Changi Airport
BOS	Logan International Airport (Boston)	HSH	Henderson Executive Airport (Las Vegas)	SLC	Salt Lake City International Airport
BQN	Rafael Hernández Airport (Puerto Rico)	INN	Innsbruck Airport	STR	Stuttgart Airport
BRN	Bern Airport	JED	King Abdulaziz International Airport (Jeddah)	SXF	Berlin-Schönefeld Airport
BTH	Hang Nadim Airport	JRO	Kilimanjaro International Airport	SYD	Sydney Airport
CDG	Paris Charles de Gaulle Airport	KMS	Kumasi International Airport	THU	Thule Air Base (Grönland)
CPH	Copenhagen Airport	KUL	Kuala Lumpur International Airport	TRN	Turin Airport
DEN	Denver International Airport	LNZ	Linz Airport	TSV	Townsville International Airport
DOH	Hamad International Airport (Doha)	MEL	Melbourne Airport	TXL	Berlin Tegel Airport
DPS	Ngurah Rai International Airport (Denpasar)	MKY	Mackay Airport	VCE	Venice Marco Polo Airport
DUS	Düsseldorf Airport	MUC	Munich Airport	VFA	Victoria Falls Airport
DXB	Dubai International Airport	MST	Maastricht Aachen Airport	VIE	Vienna International Airport
EBJ	Esbjerg Airport	NRT	Narita International Airport (Tokio)	WRO	Wrocław-Copernicus Airport
EIN	Eindhoven Airport	OAK	Oakland International Airport	YKS	Yakutsk Airport
ELS	East London Airport	OOL	Gold Coast Airport	YPL	Pickle Lake Airport
ETZ	Metz-Nancy-Lothringen Airport	OSD	Åre Östersund Airport	YQR	Regina International Airport
EUX	F.D. Roosevelt Airport (St. Eustatius)	OSL	Oslo Airport	YVR	Vancouver International Airport
FAT	International Airport Fresno Yosemite	PUF	Pau Pyrénées Airport	ZCO	Aeropuerto Maquehue Araucania
FDF	Martinique Airport	RDZ	Rodez Marcillac Airport	ZRH	Zürich Airport

Das R-System liefert Hochleistung – flexibel und langlebig.

Bei der modular aufgebauten Flächenstrahler-Familie R-System werden einzelne Lichtpaneele je nach benötigter Leistung zu einer der Anordnungen R1–R6 gruppiert. Jedes Paneel ist neigbar und besteht aus 128 Hochleistungs-LEDs. Die Glasabdeckung der Paneele bietet zusätzlichen Schutz für die Linsenoptiken und ermöglicht eine vereinfachte Reinigung.

Die Paneele werden im Aluminiumdruckgussverfahren gefertigt und sind in den Oberflächenvarianten Aluminium roh oder Polyester-pulverbeschichtet erhältlich. Die pulverbeschichtete Variante bietet erhöhten Schutz vor Korrosion in anspruchsvollen Umgebungen, zum Beispiel in Meeresnähe.

Das System kann mit unterschiedlichen Linsenoptiken bestückt werden und ist somit flexibel einsetzbar in unterschiedlichen Anwendungen: So stehen neben der Flächenbeleuchtung und speziellen Lichtverteilung für Flughafenvorfeld- oder Hallenbereiche nun auch Spotoptiken für das gezielte Ausleuchten beziehungsweise Anstrahlen von Objekten zur Verfügung. Dabei kommt unser bewährtes Multilayer-Konzept zum Einsatz: Jede optische Fläche beleuchtet das gesamte Bewertungsfeld, die Beleuchtungsstärke auf einer Fläche wird durch schichtweises Übereinanderlegen der Lichtverteilungen einzelner LEDs erreicht. Fällt eine aus, bleibt die Gleichmäßigkeit erhalten.


Das R-System liefert ein deutlich erhöhtes Lumenpaket bei wesentlich geringerem Stromverbrauch. Weiter verbessert ist das Wärmemanagement: Die Wärmeableitung erfolgt über Kühlrippen, die durch ihre spezielle Anordnung Schmutzablagerungen vermeiden und die Funktion damit langfristig garantieren.

Durch die kompakte Bauform, die in ihren Dimensionen der Größe von konventionellen Flächenstrahlern entspricht, können bestehende Systeme ohne Größenabweichungen auf das R-System umgerüstet werden.

Zwei Montagevarianten stehen zur Verfügung: mit Montagebügel oder mit Adapter für Seilabhängung. Das R-System kann über DALI angesteuert werden, ermöglicht aber auch die kabellose Steuerung über Funk. Ein speziell für dieses Produkt entwickeltes Hochleistungs-Betriebsgerät erlaubt zudem die partielle Schaltung und Dimmung von einzelnen Paneelen.

Modellvariante R4
Oberfläche: Polyester-pulverbeschichtet

Modellvarianten R1-R6

- 1.1 Lichtfarben: Kaltweiß (5.700 K) / Neutralweiß (4.000 K)
- 1.2 Aufnahme von bis zu 6 Paneelen, pro Paneel 1 DALI-Adresse
- 1.3 Bestromung: 500 mA-700 mA, Wahl der Bestromung unter Berücksichtigung der vorliegenden Umgebungstemperaturen
- 1.4 Elektronische Betriebseinheit auf Anfrage mit DALI-Schnittstelle oder 1–10 V
- 1.5 Zulässige Umgebungstemperatur -40 bis +55 °C

2

- 2.1 Unterschiedliche Abstrahlungscharakteristiken für Großflächen-, Hallen- oder Straßenbeleuchtung
- 2.2 Linsenoptik aus PMMA

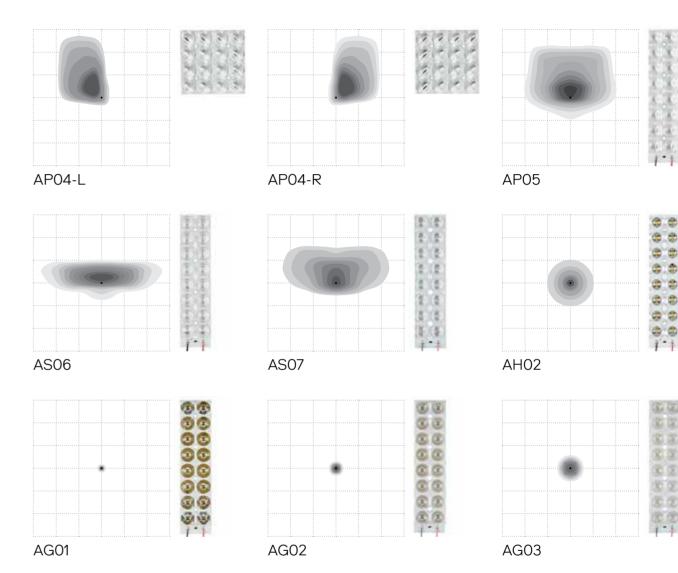
- 3.1 Leuchtenkörper aus Aluminiumdruckguss, Leuchtenabdeckung aus Einscheibensicherheitsglas (ESG)
- 3.2 Bügel aus feuerverzinktem Stahl, Trägerkonstruktion aus Aluminium
- 3.3 Oberfläche: Polyester-pulverbeschichtet, silbergrau (RAL 9006/DB 701)

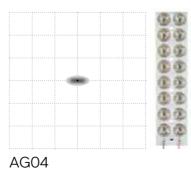
7 ewo.com/r-system 8

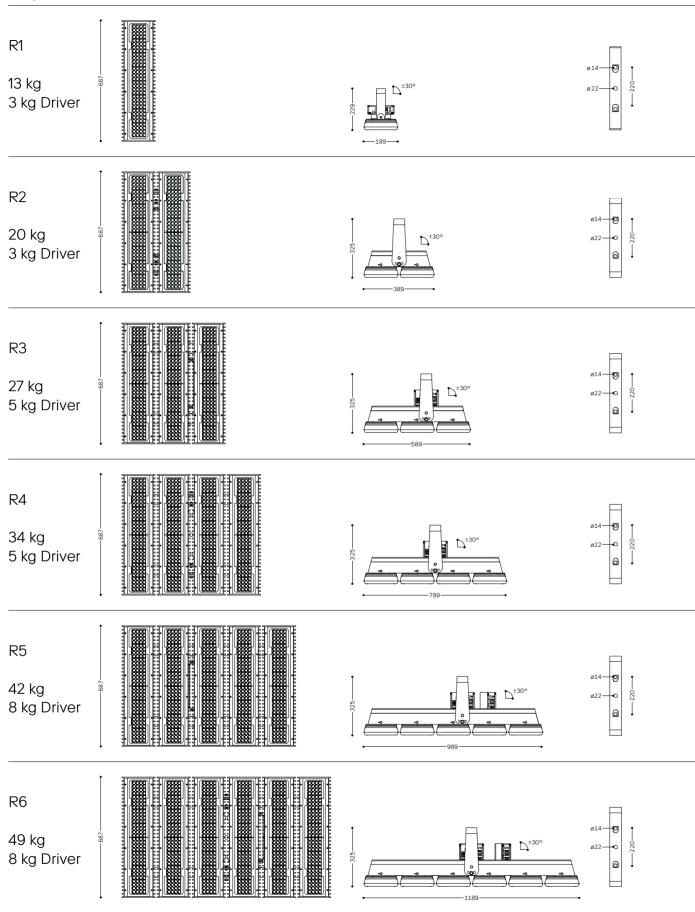
Modularer Aufbau, hochvariable Lösungen

Jedes Projekt stellt spezifische Anforderungen. Deshalb haben wir ein Produktsystem entwickelt, mit dem wir uns diesen bis ins Detail anpassen können. So schaffen wir in unterschiedlichen Kontexten hochwertige und technologisch ausgereifte Lösungen. Driver-Einheit Lange Lebensdauer Redundantes System Plug & Play connector Full-cut off Keine Lichtverschmutzung Niedere Blendung Platine - Einzeln austauschbar Kühlsystem Vielfältige Konfigurations-• Zuverlässiges Temperaturmanagement möglichkeiten Lange Lebensdauer

Glasabdeckung


- Hoher Transmissionsgrad
- Schutz der optischen Komponenten


Linsenoptiken


- Vergilbungsfreies PMMA
- Unterschiedliche Lichtverteilungen

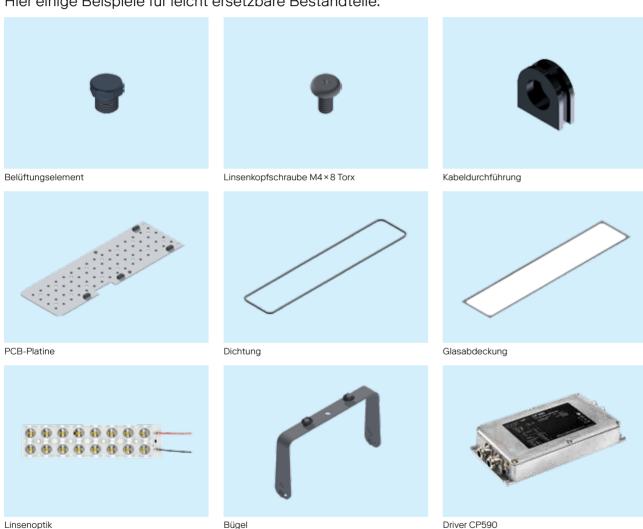
Lichtverteilungen

Je nach Wahl der Linsenoptik kann das System unterschiedliche Lichtverteilungen hervorbringen.

Lichtfarbe

	4.000 K		5.700 K		
Bestromung [mA]	Lichtstrom * [lm]	Lichtausbeute [lm/W]	Lichtstrom * [lm]	Lichtausbeute [lm/W]	Anschlussleistung [W]
R1					
500 mA	23.698	122,4	24.663	127,3	194
600 mA	27.316	117,2	28.406	121,9	233
700 mA	30.589	112,2	31.787	116,6	273
800 mA**	0 mA** 33.572 107,4		34.843	111,5	313
R2	17.005	100.1	10.005	1070	
500 mA	47.395	122,4	49.325	127,3	387
600 mA	54.632	117,2	56.812	121,9	466
700 mA	61.178	112,2	63.573	116,6	545
800 mA**	67.144	107,4	69.687	111,5	625
R3					
500 mA	71.093	122,4	73.988	127,3	581
600 mA	81.947	117,2	85.218	121,9	699
700 mA	91.767	112,2	95.360	116,6	818
800 mA**	100.716	107,4	104.530	111,5	938
	100.710	107,4	104.000	111,0	300
R4					
500 mA	94.790	122,4	98.650	127,3	775
600 mA	109.263	117,2	113.624	121,9	932
700 mA	122.356	112,2	127.146	116,6	1.091
800 mA**	134.287	107,4	139.373	111,5	1.251
R5				1	
500 mA	118.488	122,4	123.313	127,3	968
600 mA	136.579	117,2	142.030	121,9	1.166
700 mA	152.946	112,2	158.933	116,6	1.363
800 mA**	167.859	107,4	174.216	111,5	1.563
R6					
500 mA	142.185	122,4	147.976	127,3	1.162
600 mA	163.895	117,2	170.436	121,9	1.399
700 mA	183.535	112,2	190.719	116,6	1.636
800 mA**	201.431	107,4	209.060	111,5	1.876

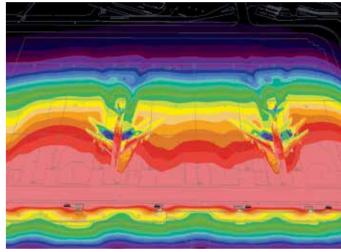
^{*} Toleranz Lichtstrom ±7 %


^{**} Auf Anfrage

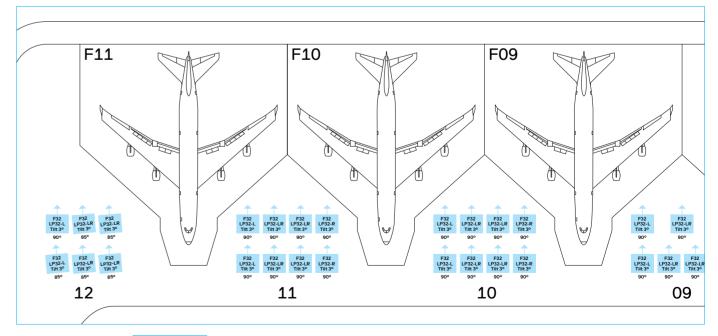
Effiziente, nachhaltige Ersatzteilverwaltung

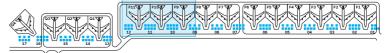
Das R-System lässt sich leicht upgraden, reparieren und anpassen. Zentrale Komponenten der Leuchte, auch LED-Platinen, können im intelligent strukturierten Baukastenprinzip einfach ausgetauscht werden. Wartungsaufwand und Kosten werden bei gleichbleibenden Qualitätsstandards auf ein Minimum reduziert.

Hier einige Beispiele für leicht ersetzbare Bestandteile:


Linsenoptik

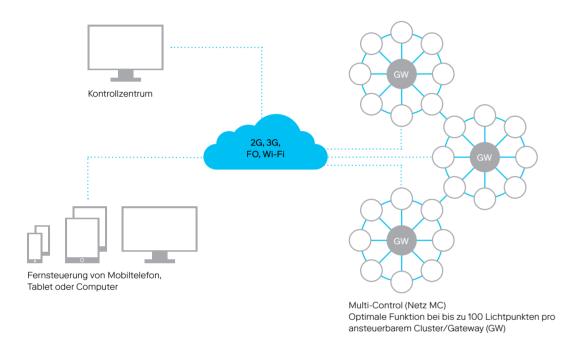
Unterstützung für integrierte Lösungen

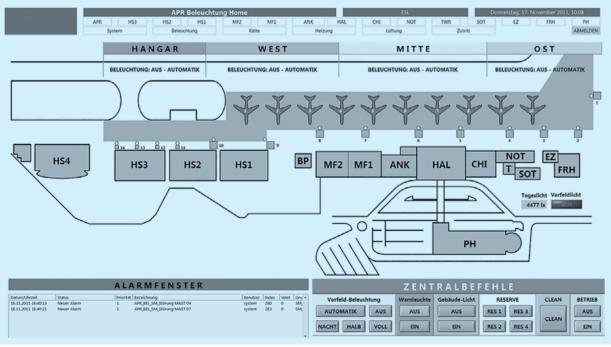

ewo bietet nicht nur Produkte für die Vorfeldbeleuchtung an, sondern umfassende Lösungen. Dazu gehören eine sorgfältige Lichtplanung und -beratung. Weltweit arbeiten unsere erfahrenen Lichttechniker eng mit den Lichtplanern der Flughäfen zusammen. Sie sorgen für eine umfassende Erfüllung der gängigen Standards wie ICAO, EASA, MOS und ISNEA. Über das Licht hinaus bieten wir Unterstützung und umfassende Anleitungen für die Installation der Lichtmasten.



3-D-Simulation der Lichtverteilung

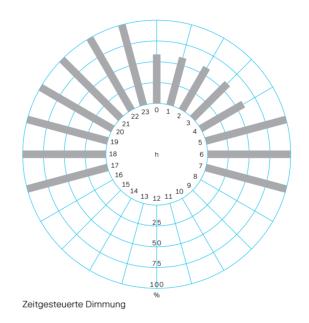
Falschfarben-Rendering zur Veranschaulichung der Beleuchtungsstärke

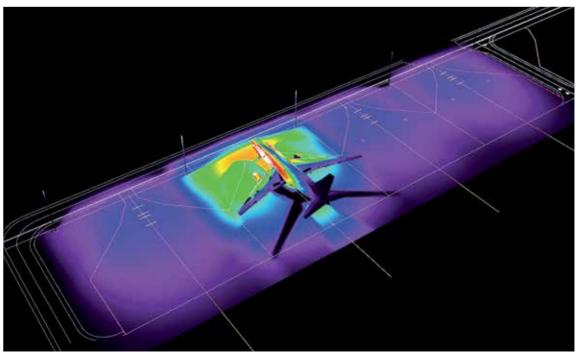




Leuchten-Positionierungsplan

Funk- und Lichtsteuerung


Wir bieten die Möglichkeit, unsere Produkte mit einem System auszustatten, das die kabellose Datenkommunikation in einem Netzwerk ermöglicht. Die Kommunikation zwischen Leuchtpaneelen und Kontroll-Interface verläuft in beide Richtungen. Das heißt: Die Leuchten werden nicht nur gesteuert, sondern ihr Betrieb auch kontinuierlich überwacht. Diese Möglichkeit der Orientierung am Bedarf erhöht die Kosteneffizienz.



Noch mehr Kontrolle, noch mehr Effizienz

Das volle Potenzial der LED-Technologie ausschöpfen: Wir bieten ein intelligentes Kontrollsystem für die Flächenscheinwerfer an. Damit können einzelne Vorfelder stufenlos gedimmt werden, um bis zu 50 Prozent der Energie einzusparen und die Lebensdauer der LEDs noch weiter zu verlängern.

Falschfarben-Rendering zur Veranschaulichung der Dimmung

Flughafen München, Terminal 1, P185 Gemeinsam mit dem Flughafen München verwirklicht ewo ein Vorzeigeprojekt der energieeffizienten Vorfeld-Beleuchtung: Zwei der bestehenden Hochmastsysteme wurden mit jeweils sechs hochleistenden LED-Flächenstrahlern ausgestattet, der Energieverbrauch der Systeme dadurch um 46 Prozent reduziert. Bestehende Masten werden reibungslos auf die neue, energieeffiziente Technologie umgerüstet.

Die Anbindung an ein Lichtmanagement-System realisiert weitere Energieeinsparungen. Zahlreiche, exakt auf die Anforderung angepasste Lichtszenarien können in der Steuerung ausgewählt werden.

Neben der hohen Energieeinsparung leistet die LED-Lösung mit einem deutlich reduzierten Wartungsaufwand und einer Lebensdauer von über 50.000 h einen wichtigen Beitrag zum ressourcenschonenden Betrieb der Beleuchtungsanlage.

Flughafen München, Terminal 1, P185

Der LED-Flächenstrahler F32 wird an der bestehenden Halterung angebunden.

Weißlicht hat einen deutlich höheren Farbwiedergabe-Wert als NAV-Lampen und ermöglicht damit gutes und entspanntes Sehen.

Jedes Paneel ist mit 152 Lichteinheiten DP31 bestückt.

EED-Technologie im direkten Vergleich mit dem bestehenden NAV-system: Unt Einhaltung aller Vorgaben verbraucht der LED-Hochmast 46 Prozent weniger Energie.

Technologischer Vergleich

Vorher

Hochmastsysteme mit:

- Natriumdampflampen: 4×SAP-1.000 W pro Mast 2×SAP-400 W pro Mast
- Elektromagnetische Vorschaltgeräte, η = 90 %
- Gesamte Anschlussleistung: 147,84 kW
- Lichtimmission: Rn < 3 %

Nachher

Hochmastsysteme mit:

- LED-Lichteinheiten: 5×F32 5.700 K, 388 W pro Mast 1×F16 5.700 K, 166 W pro Mast
- Elektronische Betriebsgeräte, η = 92 %
- Gesamte Anschlussleistung: 59,82 kW
- Lichtimmission: Rn = 0 %

Ersparnis*

59,5 %

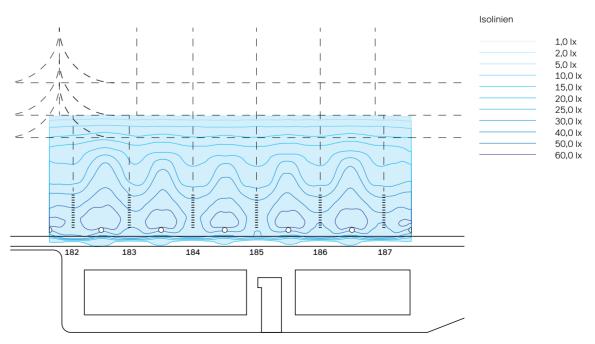
- 512.682,00 kWh/Jahr
- 307.609,00 kg CO²/Jahr
- 76.000,00 €/Jahr

Technische Zusammenfassung

Klassifizierung nach EN 12464-2: ICAO Annex 14 Beleuchtungsstärke: Em = 30 lx, U = 0,25 Ausgeleuchtete Fläche: 120.000 m² Anschlussleistung/Fläche: 0,49 W/m² Anschlussleistung gesamt: 59,82 kW

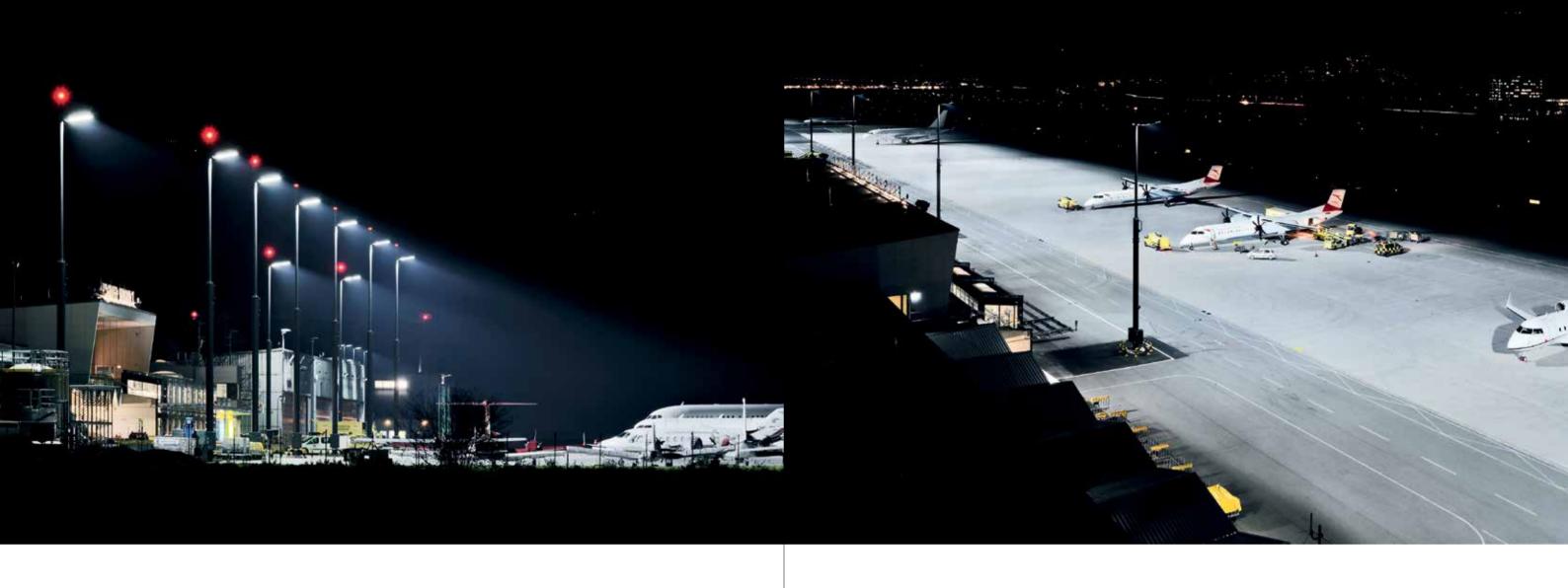
Lichtsystem

- Lichtsysteme: 7 Hochmastsysteme 5×F32 (350 mA) 1×F16 (300 mA)
- Lichtpunkthöhe: 34,0 m


Lichttechnologie

- Eingesetzte Lichteinheit: LP32
- LED: Luxeon M, 159 lm/W
- Lichtfarbe: Kaltweiß, 5.700 K
- Anzahl LEDs: 3×1 Multichip
- Bestromung: 350 mA
- Anschlussleistung: 388 W

Lichtsteuerung


Lichtsteuerung über DALI-Schnittstelle

- Nachregelung für konstanten Lichtstrom
- Nachtabsenkung (50 %)
- Fernwartung

Durch den Einsatz von unterschiedlichen Linsenoptiken werden sowohl das Vorfeld als auch der Taxiway den jeweils geltenden Vorgaben entsprechend optimal ausgeleuchtet.

^{*} CO²-Berechnung bei Energiemix von 600 g/kWh, Ersparnis bei <0,15 €/kWh und 4.500 Brennstunden pro Jahr

Flughafen Stuttgart, Deutschland, 2015 ewo lieferte über 60 F-32 Fluter und bewies einmal mehr, dass die Umrüstung von einer konventionellen Bestandsanlage auf LED-Beleuchtung effektiv und nachhaltig ist. Die neue Vorfeldbeleuchtung des Flughafens Stuttgart wird intelligent gesteuert: Das Dimmen der Beleuchtung bei Nichtaktivität erhöht noch zusätzlich Wirtschaftlichkeit und Umweltschutz.

Weitere Einsatzbereiche

Straße und Verkehr

Logistik

Hafen

Containerterminal

ewo

Seit 20 Jahren bringt ewo Orte zum Leuchten: malerische Spazierwege und urbane Treffpunkte, Straßen, kulturelle Gebäude und Plätze, Flughäfen und andere Verkehrs- und Industrieumgebungen. Know-how heißt für uns, den aktuellen Stand der Technologie für passgenaue Lösungen nutzbar zu machen.

An unserem Standort in Südtirol entwickeln und fertigen wir hochwertige Produkte zur Verteilung, Lenkung und Begrenzung von Licht im öffentlichen Raum. Das Zentrum unserer Innovationen bildet eine modulare LED-Lichteinheit. Sie ist weltweit der Ausgangspunkt für präzise und nachhaltige Beleuchtungsszenarien in beliebiger Größenordnung.

Wir bringen leidenschaftliche Neugier für individuelle Anforderungen mit, etwa ganz bestimmte Lichtwirkungen, besondere Ansprüche an Form, Farbe und Material der Leuchten, sensible oder extreme Umgebungen, spezielle technische Vorgaben. Die Konfrontation mit kulturellen und künstlerischen Fragen, der experimentelle Austausch mit Architektur, Kunst und Design haben für uns einen besonderen Stellenwert.

ewo ist ein Familienunternehmen. Wir legen Wert auf klare Kommunikation: untereinander und gegenüber Kunden, Projektpartnern und Lieferanten. Im gemeinsamen Austausch und einer Haltung kreativer Offenheit entstehen die Lösungen, die uns und unsere Produkte zu einer richtungsweisenden Kraft in der Branche gemacht haben.

Kontakt

Wir verstehen, dass besondere Orte auch nach einem besonderen Umgang mit Licht verlangen. Deshalb ist uns der unmittelbare Austausch mit Ihnen wichtig. Erst auf dessen Grundlage entwickeln wir Lichtsysteme, die Ihre individuellen Bedürfnisse erfüllen.

Wir beraten Sie gern, rufen Sie uns einfach an.

ewo srl/GmbH Via dell'Adige/Etschweg 15 IT-39040 Cortaccia/Kurtatsch (BZ) Tel +39 0471 623087 Fax +39 0471 623769 mail@ewo.com ewo.com

ewo Deutschland GmbH Gotzinger Straße 8 DE-81371 München Tel +49 (0)89 52030729 Fax +49 (0)89 52030780 germany@ewo.com

ewo Austria GmbH Grabenweg 3a AT–6020 Innsbruck Tel +43 (0)650 3064 799 austria@ewo.com

Impressum

ewo

Large Area Lighting 1. Auflage, Mai 2017 Copyright © 2017 ewo srl/GmbH

Konzept Lukas Dusini, Tamara Larcher

und Jasmine Deporta, ewo

Design NORM, Zürich

Fotografie Oskar DaRiz, Nicolò Degiorgis,

Flash Studio Photography,

Premago, formAxiom

Texte Tobias Ruderer

Lektorat Anne Busch, Tobias Ruderer

Druck Musumeci S.p.A.

